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INIBNORTFeNd {1 ydroMET Odyssey!

“Hydrothermal Materials for Environmental & Energy
Technologies”

('This started as HYDROMETALLURGY: extraction and
separation of metals from minerals using aqueous chemical
solutions (1975-1990s)

?1n mid 90s I started developing environmental technologies Solution &
applied to mineral process effluents: from controlled Crystal
neutralization processes to immobilization of elements-of-concern

via crystallization Engineering

(#Some 16 years ago I shifted my attention to gteen ENERGY
MATERIALS (solar cells, Li-ion batteries, photocatalysis) having
always crystallization as the foundation

> Our mission: circular green materials-process innovations!
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Circular Hydrometallurgy Principles*

with zero-waste mining
Implement real-time

Close
water loops
analysis and digital
Prevent waste \/

control
Reduce chemical The 12
Maximize mass,

ozl Principles
diversity !
energy, time and
space efficiency V

o
Circular
Hydrometallurgy
Use benign
chemicals Q’G} Integrate materials V
and energy flows

Electrify processes
wherever possible

v Decrease
activation energy

reagents

Safely dispose
of potentially
harmful elements

*Koen Binnemans and Peter Tom Jones, J. Sustainable Metallurgy, 9, 1-25 (2023).
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Circular Hydrometallurgy Principles=> Examples

from my own r esearch (see list of references at the end)
»Principle 1-Regenerate reagents: HCI regeneration (2000-2016)"

»Principle 3-Prevent waste: Hematite and gypsum in Zinc industry (1997-2002)*
»Principle 4- Maximize mass, enetgy...... Pressure Hydrogen Stripping! (1978-1990)°

»Principle 5- Integrate materials and energy flows: Modelling of autothermal
pressure oxidation of sulphides (1986-1996)*

» Principle 6- Safely dispose harmful elements: This presentation (1992-
present)

»Principle 7:-Decrease Activation Energy: Activators in Co cementation (1998-2002)°

rPrinciple 8-Electrify processes: Tron nroduction by electralvtic reduction (2022—present)6

Plus Recycling of LIBs as of lately’

10-09-2024 ICHS 2024, MECHELEN, BE
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Regenerate
HYDROMETALLURGY
GENERALISED FLOW DIAGRAM
reagents (After Dr. G. Van Weert)

a pioneer! FEED S FEED
Gp V. )’| PREPARATION I /(s;s.
u an
S ! P Gases i ‘I' il x

r
Weert @ { LEacHING REAGENT

TU Delft, —
1 9 928 L WASH

SOLUTION

PURIFICATION S
]
* ™ P,

REAGENT MET.

REGENERATIO! PLUS RECOVER

N—
RESIDUES BLEED METAL(S) RESIDUE!
OR ~ OR
TAILINGS TAILINGS
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Principle 1-Regenerate reagents: HCI
regeneration (<100 °C) by reactive crystallization

CaCl, + H,SO4 + x H;O — 2 HCl + CaSO4.xH,O|

Apatite ore

morphology, properties and value

ICaIcium sulfate phases have different size,

Dihydrate CaS0,2H,0

e

HCI

Anhydrite CaSO,

Calcium sulfate

10-09-2024 ICHS 2024, MECHELEN, BE
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Crystallization circuit design*: in-series
(staged) vs. single-stage (in-parallel tanks)!

-> Initial design#: supersaturation control by

- Single Stage (In-parallel)* avoids long

staged acid addition (in-series tanks) exposure of crystals to high-acid environment
S Pilot-plant testine failed due to so no Transformation to undesirable AH Phase!
p 3 g T McGill Single-stag ic Acid ion Industrial Scale-up Concept
transformation of DH/HH to AH L T
0N I Base metal, REE, . HCIbased
50. S Tt e S

15

CaCl, solution
®

Evaporation So0d reoyele

directly or via neutralization with lime.

Spent CaCl,

Evaporation

H,S0, feed
storage

Parallel
roactor

Conc. CaCl
solution

setup
simplifies.
Capaciy.

*Patented (United States Patent No. 9.783.428, 2017)
and licensed to a REE company [ o

#1(a): A. Al-Othman and G.P. Demopoulos, Caso, product

2009, Hydrometallurgy, 96,95-102. *1(b): Thomas Feldmann and G. P. Demopoulos, Hydrometallurgy,
155 (2015) 20-28.
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Principle 3-Prevent waste: Hematite and
gypsum in Zinc industry

r]apanese metallurgical industry —  »My experience from collaboration with Akita
. . Zinc on the Hematite Process?
a global leader in sustainable

material and energy usage, s

Notume 3 Eectromealurss ad Emironmentl drom alurey
Eited by CA. Yourg, AN Aaniazt, C.O_ Anderson, D3, Dresiger: B Haris and . Jones
TS (The Minrats, fetals & Materahs Socety 2003

practicing circularity since the 70s!

THE PRECIPITATION CHEMISTRY AND PERFORMANCE OF THE

. . . AKITA HEMATITE PROCESS — AN INTEGRATED LABORATORY
»Full integration of operations AND INDUSTRIAL SCALE STUDY
prom Otl n g COmE rehe ns ive Terry C. Cheng', George P. Demopoulos', Yutaka Shibachi?, and Hitoshi Masuda®
processing of all streams* to e gk it B o,
. il
recover all Valuable Clements Whlle *fijima Zinc Refinery, Akita Zinc Co. Ltd. 217-9 Shimo-Kawabata, Furumichi,

Tjima, Akita 0110911, Japan

minimizing waste generation

* Ex. Processing of CusAs residue generated in Zn plant at Cu smelter

10-09-2024
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Iron-the good, the bad and the ugly in
hydrometallurgy

GOOD: Removal of impurities during Neutral Leach; Acts as catalyst
in direct/pressure leaching of zinc cons.

BAD: Huge volumes of iron residues; environmental stability?

UGLY:

Colorado mine
spill spews
metallic
discharge into
waterways
Aug 10, 2015

Thomson Reuters
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Process Hematite | Goethite ' Jarosite

Compound formula a-FesO3 | a-FeOOH | MFe3(S04)2(0OH)g

%Fe content Iron. A N
theoretical 69.9 62.9 30-35 prClpltﬂthﬂ
actual [17, 18, 19] 50-60 40-45 25-30 lﬂ Z n

%S content (18, 20] 2-5 58 10

%Zn content [17, 18, 21] 0.5-1 8 4-6 InduStry

amount (wet basis) Jatosite Lieachabiliy,

(t/t Zn slab) [17, 19 0.22 0.64 1.0 ‘Z“:o:i EBOCS;;?,L@HO,

10-09-2024 ICHS 2024, MECHELEN, BE
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The JAROFIX process’ - a temporary civil

eng solution:

» After filtration & washing TR
the jarosite residue is ——

. Element 2000
subjected to — Al <0.1-0.2 ppm
solidification/stabilization by 0.07-0.06
mixing it with lime and Be <0.01
cement Cd <0.005

_ . . Co 0.09
»Used in Canada, Spain, India ~ Mn 0.02-0.03
and elsewhere II:]; :ggé
»3 Million TPY of jarosite el L0
residue treated globally
»~Passes TCLP but long-
term???

10-09-2024

5

Zin Production nd Capacty | year)

5
g

The Akita Zinc Hematite Process

v

AVwm

»This is “waste-free” technology as the hematite precipitate
(but also gypsum!) is used in various construction applications

» Capital cost is high but it allows for easier recovery of high value
minor metals (In, Ga, Ag)

» Operated for a while in Germany but shut down due to cost....

R

»Technology is used now also in China

g

~McGill-Akita Collaborative Work in 1997-2004 led to cleaner
hematite production and increased throughput

£

Figures from: Dai Matsuura et al., Recent Operational Improvements of Hematite Plant at Akita Zinc
Co., Ltd., A. Siegmund et al. (eds.), PbZn 2020: TMS Series,
https://doi.org/10.1007/978-3-030-37070-1_76

10-09-2024
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Industrial Hematite Process (Akita, Japan)

(Pressure Oxydrolvsis)
T =200°C T =200°C
=40 min =140 min
vertical autoclave horizontal autoclave
Feed
95°C

[Fe(ll)] = 40 g/L
[Zn(I1)] = 80 g/L
[H2S04] = 5 g/L

De-iron solution

centrifuge [Fe] =5 g/L
[Zn(I1)] = 80 g/L
[H2S0,] = 67 g/L

Hematite

53% Fe, 4.6% S, 1.0% Zn, 8.8% H>0O

10-09-2024 ICHS 2024, MECHELEN, BE
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Hematite Process Chemistry (at 200°C)*

Overall reaction:
4 FeSO4(aq) + 0x(g) + 4 HyO =2 Fe,04(s) + 4 H,SO04(aq)

Reaction scheme:

oxidation

FeSOu(aq),950c — FeSOu(aq)2000c — Fe2(SO4)s(aq),2000c

- New conceptual design can increase

*2. Ch t al, Th ipitati ;
eng et @ ¢ precipitation further throughput and product purity@

chemistry and performance of the

Akita hematite process. In crystallization | | dissolution hydrolysis @Cheng &
Hydrometallurgy 2003, TMS. Demol;goulos in
Pressure
FeSOus HyO(s)2000c  Fe203(s),2000C Hydrometallurgy
2004.

“>Further complexity: Formation of basic ferric sulfate and transformation to Fe,Os
—>Hematite product contains only ~58% Fe (vs. 70% theoretical) (~10% SO.)

ICHS 2024, MECHELEN, BE
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Production of Well Grown and .
Clean Crystalline Supers_aturatlon C_ont_rol by
10 Step-wise Neutralization
(method developed at McGill)

*Avoid homogeneous nucleation-
operate at low S

.
.
Co ".‘C:r- = Scrhomo X
.
.

*Use seed/product recycling HR
. C He .
*The above lead to avoidance of v AN ... Precipitation”
. . [~ '~,... .“-_“

the formation of undesn:ed 3 Herers
metastable phases (Stranski’s Rule) X Precipifation/,.

P . . . . eq
and minimization of impurity
uptake (suppression of surface PHo pH;  pH;
adsorption) pH

10-09-2024 ICHS 2024, MECHELEN, BE

Production of Clean Gypsum: Crystallization
in Zinc plant Wastewater Treatment*

LOW SUPERSATURATION
BY STAGING

IMPACT OF SEEDING/S ON IMPURITY

J
O B No staging UPTAKE
Run 1: With staging 2000

1800 ™

, *Run1,pHo

A aRun1,pH15 1600

1400

CRYSTAL
GROWTH

1200 O Unseeded

1000 OSeeded

Uptake in gypsum, ppm

800
600

b Ll

zn Fe(ll) Mn Mg cd Na

o

Metal
’—-* *11. C. Verbaan, S. Omelon and G.P. Demopoulos, in
SHAE Solid-Liquid Separation in Hydrometallurgy,, CIM (1999)

16
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I.et’s now discuss
Principle 6

ICHS 2024, MECHELEN, BE

Principle 6: Safely dispose harmful
elements—> the case of As + Sb, Se

l.

2.

3.
4. WE SHOULD: Fix these elements into highly insoluble compounds

Conventional practice: aiming at REMOVAL from spent
solutions/effluents is NOT adequate

The result: voluminous tailings mixed with other wastes or disposed in
“temporary” storage facilities

Not proper environmental standard in evaluating stability: 24-hr TCLP

that have a long-term stability (tested thermodynamically, kineticall
mineralogically, geochemlcaﬁvi

—>Combine with Recovery of Valuable Minor Elements and....
- DESIGN FOR 1000 YEARS!

ICHS 2024, MECHELEN, BE
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Development of clean environmental

technologies-our research

» Controlled aqueous crystallization of well grown and highly
insoluble synthetic minerals as carriers for the
immobilization of inorganic pollutants (e.g. As or Sb¥*)

*As tripuhyite FeShbO,, R. Multani, T. Feldmann, G.P.
Demopoulos, Hydrometallurgy 169 (2017) 263-274

»Development of encapsulation technologies for enhancé
stabilization of hazardous solids (As, Hg)

»Nano/Photocatalytic adsorptive deposition & recovery
(Se)/Not covered

10-09-2024 ICHS 2024, MECHELEN, BE

Arsenic Fixation!2 -which method to use?
>Depends on arsenic oxidation state and concentration

<Arsenic retention is favoured when in its V state; various methods
available to oxidise As™ (not reviewed here; at McGill we have worked
with H,O, and SO./0.; see new Barrick process with O,/C)

»Low concentration (<3 g/L As) sources as those found in most mineral
processing / metal extraction plant effluents—> Ambient T co-precipitation
with Fe(II1)*

~ Arsenic-rich industrial solutions and solid wastes—>

ite!
ScorOdlte' *See papers in Chemosphere, 151:318-323 (2016) and138 (2015) 239-246;
Hydrometallurgy, 151 (2015) 42-50 and 111-112 (2012) 65-72

10-09-2024 ICHS 2024, MECHELEN, BE
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CRYSTALLINE SCORODITE (FeAsO4.2H,0)
PRODUCTION —

Atmospheric Precipitation Process = enabled by supetsaturation control*

L. By step-wise pH control=> Commercialized by
EcoMetales in Chile and recently Zijin Co in China !

II. By oxidation—=> Piloted by DOWA; plus Bio-
scorodite by PAQUES (low [As])

*10. Demopoulos,
I1I1. By transformation/redissolution—=> Patented by iy()d‘;ﬂmnurgy’ 2009, 96,
Outotec

IV. By dissolution> Patent filed by McGill igg}ff;ubihty# .

#Bluteau and Demopoulos, 2007, Hydrometallurgy , 87, 163-177.

10092024 ICHS 2024, MECHELEN, BE

Scorodite Production: promote crystal growth by Supersaturation

Control'3!4
Homogeneous Nucleation
i €€ 2 Amorphous Solids
Work within “heterogeneous c
zone

5

Translation to multi-tank
circuit operating at different

Heterogeheou
Nucleation
Crystalline Solids

Concentration of As(V) [g/L]

10-09-2024
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. . w Bl &
Atmospheric Scorodite Process Flowsheet*
Arsenic Sludge g
CaCOs
Lok A €aC0 €0
Anecdote: The
concept was criticized
Fume = .
Dust g g g | in the 90s as non-
feasible chemeng
™y N Recovery _ process!
Dm—’ — s H —| of Metal
D DB Value
AuOy ':
.: Reeyele of Seed Potishi
and As(IIT) : Atmospheric Scorodite
@) oz { | Predpintion J
dy
*13. Demopoulos ct al., paper in Copper 2003 .

10-09-2024
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EcoMetales plant: = E 3
- F ecometales The

~ atmospheric

Arsenic stabilization process

FLALGODELZO

Limestone slurry

scorodite process

mﬁ 7352 became an
ﬁ I R
Storage tak — THICKENER lndustrlal reahty
Oxidation ~1st precipitation 2nd precipitation after 20 Yrs
) stage stage stage FILTER

research in 2012!

25.902
tonnes
scorodite

3.560

Scorodite to
EcoMetales landfill

» Product: scorodite (1/3)

of As gypsum (2/3) mixture

10-09-2024 ICHS 2024, MECHELEN, BE
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Ceremony at Ecometales scorodite plant,

April 2022

—

10-09-2024

Gypsum circuit

Recent industrial developments
i ijin Mining Corporation)ﬁ

uo » Bulk of acid neutralized
prior to Sc precipitation
6, o » Produced gypsum is
AR kil clean (0.01% As); used in

cement making

» TCLP < 1.2 ppm As

Neutralization

Limestone Sturry

~_°
R LA

= 3 TCLP data
™= T 3
25
S 2 ——Gypsun
£1s —— Areificfifation sdids
Pttt Pty g
Q. Wang et al., paper in Arsenic Symposium|@ s o

COM2024 Proceedings (Springer) in press.

SCOIOdth Circmtg—[)u: 15-Mar 234un Date .04 9-lan 18-Apr

26

13
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IV. Scorodite formation via dissolution of iron solids
(proof of concept)*

Iron solids like (oxy)hydroxides, carbonates, scrap iron etc.
HAs0, (aq) + FeOOH(s) — FeAsO, ® 2H,0 ({). .

Fig. 11. Scorodite precipitation using FeOOH as iron source and base (T = 95°C, 10 g/L As(V), 10 g/L FeOOH, Fe(l}/As(V)
= 0.8, 50 g/L seed; pH = 0.9).

0.14
\ ——As(V)

g 0.12 \ —a—Fe(II)
S +FeOOH|
E 0.10 \ ~ p
= —
S 008
s
E = K
£ 006 —;
=
B i
s 0 AV
S 0.02 \ =

e * 15/ Dabekaussen, Droppert &

: o &0 i 1% 240 Denjopoulos, CIM Bulletin, Vol. 94 (No.
2 1051), pp. 116-122 (2000)
Time (min)

ICHS 2024, MECHELEN, BE

New Gypsum-free Process: Use FeOOH
or other iron source-patent pending!®*

|

»Iron (hydro)-oxides as source of iron(III) and base
»Supersaturation control by iron dissolution

» Fast kinetics

[Reaction dme (houry) Jo__1 213 4 |

1460 798 409 204 129
222 750 673 587 534
0.62 074 073 098 1.06

*W0,/2020/237361 Gypsum-free scorodite (<5% unreacted FeFOOH) g

ICHS 2024, MECHELEN, BE
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scorodite with Fe oxides*

As,Oj5 oxidation in solution and precipitation of

As203 @ —* As203 (4

S02/02
Oxidation

O+
SO2

in H2504
or Fe203

As(V) solution

Keep
Fe(IIT)/As(V)< 1!

Recycle
seed
(optional)

29

Solution
recirculation

T~

Scorodite
Precipitation

Filtration

! 7
Clean
scorodite

Solution for
treatment/recycling

, MECHELEN, BE
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Scorodite stability: Thermodynamics
Ej,-pH Diagram for Fe-As-H,O at 25°C (0.0005 ), with Ferric Hydroxide (Kyp=-38.6)
as the Predominant Tron (TTT Oxvhvdroxide Comnound*14
Fe-As-H20. 298.15 K e
0= Asi(Fe+As) < 0.5, m= 00005
P . . .
s T — ]
et Fe[3+]+ % N
g 7& FeAs0, 2H,0(s) || 2 e E|
=z = T *M-C. Bluteau and G.P. Demopoulos,
. ~ - 2004, “Fixation of Arsenic in the
b ]
- Fe[2+]+ Fe(OH),(52)+FeAs0, 2H.0(s) - Form of Scorodite - A Solubility
= L0 Feize Study”, in Waste Processingand.
5 s5F ©AS0,.2H,0(s) 1 A .
Fel[+]+HIfs D4] Wﬂd
FolOmb B nAson] Metallurgical Industrials V, R. Rao et
=N Bl al. Eds., CIM, Montreal, pp.439-451
Fe[Z+]+H AsO (ag)
gk B
B B~ ie_[zwAs‘(s) ‘ Fe(OH i3+ Tsn :'&‘\ Euo e o
o 2 4 B a8 10
pH

15
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Scorodite stability: pH and E; dependent

iﬁ;"’%‘e 1]’_1“5‘};’12%3 test involving AS RELEASE AS A FUNCTION OF
e@p REDOX POTENTIAL®
AStable (]ong term >1 year dissolution ' @ pH 7 Significant release when E; < 150m\;U

tests¥) at 4<pH <7
7)Also note that not all scorodites are

equal!

100 mV (mg/L)

entration (mg/L)

As Concs

#Bluteau and
Demopoulos, 2007,
Hydrometallurgy , 87,
163-177.

*Cesar Verdugo, Gustavo Lagos, Levente Becze, Mario Gémez and
1 George Demopoulos, in Proceedings of HydroProcess 2012-4™ Ine
Symp. on Process Hydrometallurgy, Santiago, Chile

0 7 1w 2 28 3 a2 49 s 63
Days

10-09-2024

Enhance stability of scorodite by encapsulation % McGill

Stabilization technology
based on encapsulation Encapsulation materials

Encapsulation Scorodite N n A ,
Matrix & Substrate Vietal pnospnates

(AIPO4-1.5H20, and Ca5(P04)30H,F)
Aluminum hydroxyl gels

Aluminum hydroxyl gels

Aluminum Aluminum
Salt hydroxyl

Solution

16
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Development of Al-gel encapsulation
technology-the next generation*

*  Enhance scorodite stability by encapsulation;
*  Perfect for integration with gypsum-free scorodite

*Patents in several countries granted

Low

gel/scorodite
l_\J-gel §Q~§ P Eh%&‘% ratio (Al:As =
=7, @ —_ Z e S

Naked scorodite Blending

Mineralizatioy

ICHS 2024, MECHELEN, BE
10-09-2024 33

33
Al-gel structure and Stability testing!’
i?ém‘:;gﬁiﬁgg%;;ﬁg;g;:cmte . Long term stability of aged gel scorodite samples
"4 v
107 Scorodite naked (Batch 2)
H2-OH w AlO)g oWy
: > 8
£
5 77
T 64 PpH ~ 7 (oxidizing condition)
=
IJ OH < 37 Test 21 0.1 AlAs, 14 days,
2 24 es _ o post washing,
S(°)4 4 .12 :i:/‘z\s,wdaya
T . 0.1 AUAs, 14 days aging, Test24  pH=6.95 1o postwashing,
0 4 1:651 19 :)oslwash:ng, L/S=:10 i i i . L/s=3
200 300 00 6 00 8 00
17. Karl Leetmaa et al., J. Chem. Technol. Biotech. 2814-; 1§8 0 _;?:e (ja 5 07 009
206-213; and 2016, 91: 408-415 v

10-09-2024 ICHS 2024, MECHELEN, BE
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»Wide pH and oxic-anoxic stability via
formation of AIOOH mineralized coatings*

1,000

Oxic “Anoxic -
pH=86 o e f Anoxuc condition|
E, = 315mV ~200mV  Boehmite v
100 4 \.r/‘\
er2 pH=ga _ N ¥ W\A_MM
J104 P E, = 340mV 3 2
2 —= 210mV < | s N
E £ ‘ | az | A Q ,,Oxuc condition
- 2 9\ ‘ A
1 kol A \ )
< £ AN\ \/ \w Y.
014 pH=76
Before agin
0.01 T T
Scorodite Scorodite Al 40 50 60 70 100
(naked) syslsm (naked)  system 20 (degree;
167 days at 22 °C (degree)

STABILITY OF GEL MINERALIZED SCORODITE:
33 times reduced As release!

*17(c). Fuqiang Guo and G.P. Demopoulos, 2018, in Extraction 2018, TMS, 1411-1420.

Concluding remarks

>I-hmelemmmq:ﬂ:inkﬁptvnlm-l

I
Seiocion and desigh 1 sabiity,cafance Iongtcem|

>Crystallization but also encapsulation and new
nanomaterial-based technologies (em) very
mt in our pursuit of circular

~National and international collaboration as well as creation

of research consortia with mdustry as done in Japan by
JOGMEC is the way forward!

~ We need to advance “Benign by Design” paradigms!

ICHS 2024, MECHELEN, BE,
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