Copper leach—solvent extraction—electrowinning: Keystone technology for sustainable hydrometallurgy

Kathryn C. Sole (PrEng, PhD, FSAIMM, FSAAE) 1st International Circular Hydrometallurgy Symposium 9 September 2024

Copper demand forecast

Electric vehicles

- Electrical grid for charging of EV batteries
- Solar voltaic panels for energy-independent vehicles

Vehicle	kg Cu
ICE	23
Hybrid EV	40
Plug-in EV	60
Battery EV	83
Hybrid bus	89
Battery bus	220-370

Data from International Copper Study Group (2017)

Copper demand forecast

Urbanisation and megacities

Swann Index - intensity of use of a metal by GDP per capita

Metal	2019 (Mt)	2035 (Mt)	Increase (%)
Nickel	2.4	5.2	116
Steel	1.7	2.6	50
Aluminium	66	103.6	57
Copper	23.6	29.7	26

Driven by decarbonization and the transition to electrification and automated technology

Data from Ghosh (2019), Le Pan (2022)

Process routes for copper ore

1974: First large-scale copper L-SX-EW

Nchanga Tailings Leach Plant, Konkola Copper Mines, Zambia

1 Mt/a tailings – 0.4% Cu_{AS} recovered by hydromining PLS 3 g/L 4 × 3E–2S SX trains

2024: Still in production Ramping up to 300 kt/a

Photographs: BASF, Barry Wills, GoogleEarth

Copper L-SX-EW: A circular hydrometallurgy flowsheet ahead of it's time

Binnemans & Jones (2023)

Oxides

Tenorite: $CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$ Cuprite: $Cu_2O + H_2SO_4 \rightarrow CuSO_4 + Cu + H_2O$

Carbonates

Azurite: $2CuCO_3 \cdot Cu(OH)_2 + 3H_2SO_4 \rightarrow 3CuSO_4 + 2CO_2 + 4H_2O$ Malachite: $CuCO_3 \cdot Cu(OH)_2 + 2H_2SO_4 \rightarrow 2CuSO_4 + CO_2 + 3H_2O$

Silicates

Chrysocolla: $CuO \cdot SiO_2 + H_2SO_4 \rightarrow CuSO_4 + SiO_2 \cdot nH_2O + (3-n)H_2O$

Secondary sulfides

Chalcocite: $Cu_2S + \frac{1}{2}O_2 + H_2SO_4 \rightarrow CuSO_4 + CuS + H_2O$ Covellite: $CuS + \frac{1}{2}O_2 + H_2SO_4 \rightarrow CuSO_4 + S + H_2O$

Leach CuO + 2H⁺ \rightarrow Cu²⁺ + H₂O

Solvent extraction Extraction: $Cu^{2+} + 2RH \rightarrow CuR_2 + 2H^+$

Leach CuO + 2H⁺ \rightarrow Cu²⁺ + H₂O

Solvent extraction

Extraction: $Cu^{2+} + 2RH \rightarrow CuR_2 + 2H^+$ Stripping: $CuR_2 + 2H^+ \rightarrow Cu^{2+} + 2RH$

Electrowinning

Cathode: $Cu^{2+} + 2e \rightarrow Cu$ Anode: $H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e$

ICHS

Leach CuO + 2H⁺ \rightarrow Cu²⁺ + H₂O

Electrowinning

Cathode: $Cu^{2+} + 2e \rightarrow Cu$ Anode: $H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e$

Principle 1: Regenerate reagents

Leach CuO + 2H⁺ \rightarrow Cu²⁺ + H₂O

```
Solvent extraction
Extraction: Cu^{2+} + 2RH \rightarrow CuR_2 + 2H^+
```

Stripping: $CuR_2 + 2H^+ \rightarrow Cu^{2+} + 2RH$

Electrowinning

Cathode: $Cu^{2+} + 2e \rightarrow Cu$ Anode: $H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e$

Modern extractants

Oxime functionality

ICHS

Chemistry of copper extraction

Chelation: Greek – pincers

Chemical selectivity of oximes

- High selectivity over base metal cations
- Strong extraction even at low pH
- No interstage neutralisation required
- No Na deportment to raffinate

Data: BASF

Principle 10: Minimise chemical diversity

D • BASF We create chemistry

SX enabling the versatility of L-SX-EW

EW requires 45–50 g/L Cu

- Low-grade ROM ore (< 0.5% Cu)
- Rock size up to ~ 500 mm

Los Bronces, Chile

ICHS :

Photographs: Arizona Geological Survey, Mining.com

	<u>Cu in PLS (g/L)</u>
Dump leach	0.5 – 3
Heap leach	1.5 – 8
Vat leach	6 – 40
In situ leach	0.5 – 2
Agitation leach	2 – 30

Kansanshi, Zambia

Photograph: First Quantum Minerals

Kansanshi, Zambia

Photograph: First Quantum Minerals

Cu cathode

LME Grade A cathode > 99.99% purity

Photograph: Kansanshi

Extraction efficiency

High extraction efficiency for PLS [Cu] ranging two orders of magnitude

Cu SX global survey, Sole et al. (2022)

Principle 10: Minimise chemical diversity

High extraction efficiency for PLS [Cu] ranging two orders of magnitude

Cu SX global survey, Sole et al. (2022)

ICHS

Modern oxime extractant formulations

Nchanga Tailings Leach Plant, Konkola Copper Mines, Zambia (1974)

 $4 \times 3E-2S$ SX trains

Photograph: GoogleEarth

Nchanga Tailings Leach Plant, Konkola Copper Mines, Zambia (1974)

4 × 3E-2S SX trains

Photograph: GoogleEarth

Impurities in leach solution

Carbonates

Calcite: $CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + CO_2 + H_2O$ Dolomite: $CaMg(CO_3)_2 + 2H_2SO_4 \rightarrow CaSO_4 + MgSO_4 + 2CO_2 + 2H_2O$

Silicates

Chrysocolla: $CuO \cdot SiO_2 + H_2SO_4 \rightarrow CuSO_4 + SiO_2 \cdot nH_2O + (3-n)H_2O$

Other acid-soluble impurities

Fe, Al, Mn,...

Process bleed streams

- Bleed for byproduct recovery

 Co
- Bleed for impurity build-up to avoid detrimental downstream effects

 Cl, Mn, Fe, Ca, Si
- Loss of valuable components
 H₂SO₄, Co, Cu, ...
- Return to process?

Impurities in process water return

- Ca saturation
- Suspended solids
- Organic contaminants
 - sewage, oils and grease, humic acids

Gypsum accumulation bending steel structure of activated carbon electrolyte filter

Principle 2: Close water loops – with care

- Bleed for byproduct recovery

 Co
- Bleed for impurity build-up to avoid detrimental downstream effects

 Cl, Mn, Fe, Ca, Si
- Loss of valuable components
 H₂SO₄, Co, Cu, ...
- Return to process?

Heap leaching Chile, SW USA

Permanent heap Mantos Blancos, Chile

Dynamic heaps Spence, Chile

SX mixer-settlers

- Large settling area
 - up to 25 m × 30 m

Stripping efficiency of oximes

- Typically 50%–70%
- Large dead inventory of Cu on SO
- Higher SE acid concentration
 - Increase hydrolytic degradation
 - Crud formation
 - Organic material to tailings

ICHS

Uranium SX circuit, Olympic Dam, Australia

Columns vs. mixer-settler?

- Reduce footprint
- Reduce "settler" volume
- Enclosed environment
- Kinetics of Cu SX too slow
- Low number of stages

Photograph: Bateman Litwin

Reagent and design improvements

Parameter*	1970s	2000s
No of extraction stages	4	2
No of stripping stages	2	1
Mixer retention time (min)	3–4	2–3
Cu production (t/a/m ²)	4	16

*Cu SX plants USA and Chile

Kordosky (2002)

Parameter*	1970s	2000s
No of extraction stages	4	2
No of stripping stages	2	1
Mixer retention time (min)	3–4	2–3
Cu production (t/a/m ²)	4	16

*Cu SX plants USA and Chile

Kordosky (2002)

Principle 8: Electrify where possible

Solvent extraction

Extraction: $Cu^{2+} + 2RH \rightarrow CuR_2 + 2H^+$ Stripping: $CuR_2 + 2H^+ \rightarrow Cu^{2+} + 2RH$

Electrowinning

Cathode: $Cu^{2+} + 2e \rightarrow Cu$ Anode: $H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e$

Tankhouse design

- Anode-cathode spacing
- Tankhouse layout
- Electrical layout
- Maximise crane productivity

Trend to higher current density

Global Cu EW survey, Sole et al. (2019)

Higher current density \rightarrow higher acid mist production

Acid mist

Anode: $H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$

- Irritation of mucous membranes, causing coughing and difficulty in breathing
- Dental erosion and acute reduction in lung function on long-term exposure
- Throat and lung cancer classified as Group 1

 carcinogenic to humans

Photograph: Frank Crundwell

Acid mist suppression/mitigation

- FC-1100 (3M) gave excellent performance at low dosage
 CFC "forever chemical"
- Natural products (Saponins, Mistop, etc.) work at low CD
 Ineffective and degrade above ~250 A/m²
 - Susceptible to biological growth
 - \rightarrow degradation and poor PST in SX
- Clariant: Floticor 0T, Floticor DC 17382, CAMS 007
 Used at several African sites
- Protea: EW 1000 and EW 1100
 Used in Australia, under trial in USA

Principle 9: Use benign chemicals

- FC-1100 (3M) had excellent performance at low dosage
 CFC "forever chemical"
- Natural products (Saponins, Mistop, etc.) work at low CD
 Ineffective and degrade above ~250 A/m²
 - Susceptible to biological growth
 → degradation and poor PST in SX
- Clariant: Floticor 0T, Floticor DC 17382, CAMS 007
 Used at several African sites
- Protea: EW 1000 and EW 1100
 Used in Australia, under trial in USA

ICHS

Sole Consulting, South Africa, 9 September 2024

Data: 3M

Contributions to Cu EW power consumption

Thermodynamic energy requirement (from Faraday's Law): 0.76 kWh/kg

Actual power consumption: ~ 2.0 kWh/kg

→ Energy efficiency ~ 38%!

Voltage components

η

 $V_{\rm h}$

- *E*^o : thermodynamic potential
 - : overpotentials
- *V*_e : Ohmic drop due to electrolyte
 - : Ohmic drop due to hardware
- *V*_r : Voltage loss due to rectifier

Current components

- *nF* : stoichiometric current (charge)
- Cl_e : current inefficiency due to side reactions
- CI_s : current inefficiency due to shorts
- SC : stray currents in tankhouse

From Nicol (2008)

- Permanent cathode technology
- Electrical contact design
- Spacers for electrode alignment
- Automated crane handling
- Electronic hot-spot and short detection

...

Trends in current efficiency

Global Cu EW survey, Sole et al. (2019, 2022)

Contributions to Cu EW power consumption

Voltage components

η

V_

 $V_{\rm h}$

- *E*^o : thermodynamic potential
- η_c : cathode overpotential
 - : anode overpotential
 - : Ohmic drop due to electrolyte
 - : Ohmic drop due to hardware
- *V*_r : Voltage loss due to rectifier

Current components

- *nF* : stoichiometric current (charge)
- Cl_e : current inefficiency due to side reactions
- Cl_s : current inefficiency due to shorts
- SC : stray currents in tankhouse

From Nicol (2008)

Principle 4: Maximise energy efficiency Principle 7: Decrease activation energy

Alternative anode material

- Ti mesh coated with precious metal oxide
- Lower η_a for O₂ evolution
- 15% reduction in cell voltage
- 2% increase in CE
- No cell cleaning
- Eliminate health risks of Pb
- Commercialised in US, Chile, Norway
- Fragile prone to shorts
- Expensive PM recovery

DSA – dimensional stable anode CTA – coated titanium anode

Contributions to Cu EW power consumption

Voltage components

η

 $V_{\rm h}$

- *E*^o : thermodynamic potential
 - : overpotentials
- *V*_e : Ohmic drop due to electrolyte
 - : Ohmic drop due to hardware
- *V*_r : Voltage loss due to rectifier

Current components

- *nF* : stoichiometric current (charge)
- Cl_e : current inefficiency due to side reactions
- CI_s : current inefficiency due to shorts
- SC : stray currents in tankhouse

From Nicol (2008)

Alternative anode reaction for Cu EW

Conventional:	$H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e$	$E^0 = -1.23 \text{ V}$
Alternative:	$Fe^{2+} \rightarrow Fe^{3+} + e$	<i>E</i> ⁰ = -0.77 V
Regeneration:	$2H_2O + SO_2 + 2Fe^{3+} \rightarrow 2Fe^{2+}$	+ H ₂ SO ₄ + 2H ⁺

May et al. (2005); Sandoval et al. (2010)

Principle 3: Prevent waste

Cathode scrap

- Control of EW parameters
- Electrolyte impurities
- General housekeeping in tankhouse

Photographs: Zindaba Zulu, Yolande Stegmann

Principle 3: Prevent waste Principle 6: Safely dispose of toxic materials

Lead sludge

- Control of EW parameters
- Anode care and maintenance
- General housekeeping in tankhouse
- Recycling of old anodes
- Use of non-lead anode


```
Photographs: XStrata, RSR Technologies
```


Principle 9: Use benign chemicals Principle 6: Safely dispose of toxic materials

Acid mist suppressant – FC-1000

Fluorocarbon chemicals no longer permitted

Biodegradability of SX diluents

- Traditional use of petrochemical byproducts inexpensive, low-value distillate
- Synthetic aliphatic diluents lower toxicity, low odour, biogradeable

Principle 12: Zero-waste mining Principle 3: Prevent waste

In-situ leaching

Some further thoughts...

New Cu SX-EW plants worldwide

Tinkler & Sole (2023)

New Cu SX-EW capacity

Tinkler & Sole (2023)

ICHS

African Copperbelt

- 33% global SXEW Cu (Chile: 34%)
- +50 SXEW operations
- 2.8 Mt/a capacity

Tinkler & Sole (2023)

Copper cathode capacity in DRC

Xi pledges \$51B in funding for Africa

Navigating Critical Mineral Supply Chains: the EU's Partnerships with the DRC and Zambia

Multinational investment

Restarted ~ 2008

The other side of the fence

- +100 000 artisanal miners
- Estimated 40 000 children
- 65% of the population living on < \$ 2.15/d
- 4th poorest country in the world – 2024

Photograph: Hugh Brown

The other side of the fence

Photographs: Hugh Brown

50 Years of copper L-SX-EW: A modern circular hydrometallurgy flowsheet

Binnemans & Jones (2023)

Thank you

