Life Cycle Assessment for the production of Lithium Hydroxide Monohydrate battery-grade

1st International Circular Hydrometallurgy Symposium September, 2024

Peter Ehren & Macarena González bring over 40+ combined years of experience in the lithium industry. Two Companies:

Process & Environmental Consultancy (2007): provides technological - and ESG-based solutions to address a range of challenges in the Lithium sector (lithium-experts.com):

- Worked with the leading companies in the lithium space
- With a strong focus on challenges in extraction & refining
- Spanning projects from lab-scale to full-scale production
- Lithium sourced from brines (DLE and solar evaporation) hard rock and sedimentary rock (clay)
- Visited many of the most significant lithium projects in the world.

Lithium Ark (2021): A clean tech company that:

- Offers Blue and Green+ Lithium Refining two novel pathways.
- Helps companies transition from Black/Grey Refining to Blue/Green Refining

ROADMAP

1. Background

Lithium Sources

- Brines
- Ores (Spodumene)
- Clays

Salar de Olaroz, Argentina (Arcadium Lithium)

Talison Lithium's Greenbushes Mine (iLiA, 2024).

loneer, Nevada (Ioneer.com)

All roads go through Lithium Chloride

2. Refining Technologies

ARK GREEN*: Pathway to Zero-Carbon, Zero-Waste Conversion

- Lithium Chloride is converted into LiOH by adding KOH.
- Potassium Chloride (KCI) and battery-grade Lithium Hydroxide (LiOH) are easily crystallized from solution.
- KCl is 100% recycled back into KOH via electrolysis, making the reagent fully circular.
- Electrolysis generates HCI (Acid), useful in brine processing.

Caustization with Potassium Hydroxide (Ark Green+)

$LiCI + KOH \leq > LiOH + KCI$

Lithium Potassium Chloride Hydroxide

11

Lithium Hydroxide

Potassium

Green+ Refining: Crystallization to Achieve High-Purity

Our process uses crystallization equipment and processing common in the **chlor-alkali** industry to separate high-purity crystals of Lithium Hydroxide (LiOH) & Potassium Chloride (KCl) from the salt mixture.

The inverse slopes of the two solubility curves are exploited:

Potassium Chloride (KCl) is separated, purified and crystallized by cooling (20°C) without co-crystallization of Lithium Hydroxide (LiOH).

Then,

Lithium Hydroxide (LiOH) is separated, purified and crystallized by evaporative heating (90°C) without cocrystallization of KCl.

All other impurities remain in solution to be later purged

What is a reciprocal salt system?

- Comprises of two salts and water, where the two salts do not share a common ion.
- These salts yield two new salts, an interaction known as a double decomposition, thereby forming a reciprocal salt pair.
- May be illustrated using a pyramid with a square base, with water at the top and each of the four salts located at the corners.
- The reactions within a reciprocal salt system must reach a state of equilibrium, where the rates of the forward and reverse reactions are equal. It is reversable.
- It is NOT a Salt Metathesis or precipitation reaction, which is a type of double-replacement reaction, where metathesis occurs between two inorganic salts where they exchange ions to form an insoluble precipitate.

The Jänecke projection

The Jänecke projection

15

Experimental Method

LiOH H2O

KCL

IBZ, 2024

GEA, 2023

Lithium Chloride Electrolysis (Lithium Electrolysis)

Dissolution of LiCl: $\text{LiCl} \rightarrow \text{Li}^+ + \text{Cl}^-$ At the Cathode (Reduction): $2H_2O+ \rightarrow H_2 + OH^{2-}$ At the Anode (Oxidation): $2Cl^- \rightarrow Cl_2 + 2e^-$

Advantages of KCI-Electrolysis over LiCI-Electrolysis		POTASSIUM Chloride Electrolysis	LITHIUM Chloride Electrolysis
	Description	Electrolyzes Potassium Chloride (KCI) back into Potassium Hydroxide (KOH) to be used as Reagent.	Electrolyze Li-Chloride Feedstock directly into Lithium Hydroxide.
	Current Efficiency	98%	70%
	Energy Consumption (kWh/MT LiOH)	3300 kWh	7300 kWh
	urrent Density 6000 A/m ²		2400 A/m ²
	OPEX/MT	Low . < ½ Power Consumption	High
	CAPEX	Low . < ½ Equipment CAPEX	High
18	Industrially-Scaled	Yes . 2 Million Tons Annually	Νο

GREY REFINING (Conventional): A Carbon-Intensive, Financially Wasteful Pathway

Reagents are Highly Problematic:

- Reagent Cost ↑
- Transport Cost ↑
- Unavoidable CO₂ Emissions
- Reagent Impurity Impacts Lithium Purity
- Lithium Losses >6%

Grey Refining:

- Costly Reagent Use
- High CaCO₃ & NaCl Waste
- High CO₂ Emission
- High OPEX/MT

Liming with Calcium Oxide (CaO) (Grey Refinery)

 $\begin{aligned} \text{Li}_2\text{CO}_3 &\rightarrow 2\text{Li}^+ + \text{CO}_3^{2-} \\ \text{Ca(OH)}_2 &\rightarrow \text{Ca}^{2+} + 2\text{OH}^- \\ \text{CO}_3^{2-} + \text{Ca}^{2+} &\rightarrow \text{CaCO}_3 (\text{s}) \\ \text{Li}_2\text{CO}_3 (\text{s}) + \text{Ca(OH)}_2 (\text{s}) &\rightarrow 2\text{LiOH} (\text{aq}) + \text{CaCO}_3 (\text{s}) \end{aligned}$

ARK BLUE Lithium Refining: A Zero Waste Pathway

- Lithium Carbonate-TG is converted directly into LiOH by adding Nitric Acid & Potassium. Hydroxide (KOH).
- Potassium Nitrate (KNO₃) and battery-grade Lithium Hydroxide (LiOH) are easily crystallized from solution.
- BLUE Lithium generates two valuable products: LiOH-BG and Potassium Nitrate (KNO3).

BLUE Lithium Refining:

- Produces two valuable products: LiOH-BG & Potassium Nitrate (KNO₃) a high value fertilizer. used in greenhouses essential in plant growth.
- Lowest Net OPEX/MT, when the value of KNO₃ credited back to OPEX
- Lowest CAPEX of all Lithium Refining options.
- Zero waste.
- Less CO2 emission than conventional refinery.

+HN03 + KOH (Ark Blue)

Patented

Continuous Flow CRYSTALLIZTION MODULE

Lithium Ark, 2024

The inverse slopes of the two solubility curves are exploited:

Potassium Nitrate (KNO₃) is separated, purified and crystallized by cooling, without co-crystallization of Lithium Hydroxide (LiOH).

Then,

Lithium Hydroxide is separated, purified and crystallized by evaporative heating, without cocrystallization of Potassium Nitrate (KNO₃).

All other impurities remain in solution to be later purged.

3. Life Cycle Assessment

Research Questions

- How can we best summarise the complexity of pathways for the production of battery-grade lithium? Identify and summarise the various routes available for producing Li2CO3 and LiOH.
- What are the environmental impacts of the primary process routes for Lithium Carbonate Equivalents (LCE)?
- What are the environmental impacts of the primary processing pathways for the production of battery-grade Lithium Hydroxide Monohydrate?

Life Cycle Assessment: Methods

Methodology

- Scope 1, 2 and 3 emissions.
- 2016 ReCiPe Hierachist Midpoint (100 years GWP).
- Field and Literature Data.

Guidelines

- ISO14040 and ISO14044 standards.
- International Lithium Association Product Carbon Footprint of Lithium Products Guidance (ILiA, 2024).
- Intergovernmental Panel on Climate Change (IPCC, 2013).

- Cradle-to-Gate. End Point in The Netherlands.
- Transportation included.
- Mass balance.
- Waste (Salt tailing), Emissions to Air (CO_{2eq}).
- Heat and Electricity on and off-site.

LIOH H20 LCA

- Location at Brightlands Chemelot Campus, The Netherlands.
- Dutch and/or European supply reagent use.

Functional Unit: 1kg Lithium Product

Lithium Product	Product grade	CAS Number
Lithium carbonate (Li2CO3)	> 99.0% Li2CO3 (> 18.6% Li) (anhydrous)	554-13-2
Lithium hydroxide monohydrate (LiOH.H2O)	> 99.0% LiOH.H2O (> 16.3% Li)	1310-65-2

Functional Unit : 1 kg Lithium Hydroxide Monohydrate battery-grade product.

27

System Boundary

Existing Allocations

Global Warming Potential of Lithium Hydroxide Monohydrate Battery Grade production

Environmental Impacts

Ark Blue

Ark Green+

LiCl Electrolysis

Liming

0

Scenario Analysis: GWP

GWP Lithium Hydroxide Battery Grade 8 7.06 7 6.49 6.34 6.14 R g Co2 eq per kg LHM-BG 4.84 5 4.29 4.14 3.94 3.76 2.69 3 2.08 1.64 2 0.70 1.45 1.12 1 0 Project in The Netherlands Project in Belgium Project in The Netherlands 50% Solar Project in Belgium 50% Solar energy energy Liming Ark Blue Ark Green+ LiCl Electrolysis

32

4. Economic Analysis

Comparison: CAPEX

CAPEX, Total CAPEX for 30ktpa LiOH Refinery

Blue, Green and Green* Refinery Types are proprietary Process Technologies of Lithium Ark

Lithium Ark, 2024

34

Comparison: Reagent and Energy costs/MT of LHM

Net OPEX is the direct cost to produce each MT of LHM, including reagent, direct labour and energy, minus the market value of beneficial co-products, such as HCI, KCI-Food Grade, and/or Potassium Nitrate.

5. Key Factors

Key Factors to decarbonize Lithium Refining

- Eliminate the need for Soda Ash.
 - Eliminate costly reagent transport.
 - Eliminate impurities (in the Soda Ash) from contaminating the refining of battery-grade Lithium chemicals.
- Replace Lithium Carbonate (Li2CO3) with Lithium Chloride (LiCl).
 - Chloride (Cl2) has a higher value vs carbon from carbonate.
- Provide Refineries the flexibility to produce Lithium Carbonate-BG by simply adding CO2 to LHM.
- Source Green / Renewable energy from the grid.

12 Principles of Circular Hydrometallurgy Ark Green+

Advantages for DLE Plants to sell Li-Chloride vs Li-Carbonate

	Lithium Chloride (LiCl)	Lithium Carbonate (Li ₂ CO ₃)
Environmental	Opens the door to zero waste & zero CO ₂ emissions by Green ⁺ Refineries making LHM/LCE.	Inherent Carbon in Li_2CO_3 makes CO_2 emissions inevitable.
CAPEX	Lowered CAPEX by <u>not</u> building lithium carbonate plant.	High CAPEX (adds US\$150 to \$250 million @ 30kpta capacity)
Financing Challenge	Allows DLE plant to <u>internally</u> fund growth from LiCl sales, lowering need for external sources of funds.	Funding High CAPEX thru outside financing dilutes company equity.
Ramp-up Risk	No qualification of battery-grade lithium is required. Faster uptime = quicker pay- back.	High. Adds 18+ months to qualify battery-grade lithium and ramp up.
Skilled Labor Requirement	Medium Difficulty	High Difficulty: DLE and Lithium Carbonation plant.

Standardizing Li-Chloride Specifications

		Solution	Crystal
LiCI	%	42	98
H ₂ O	%		0.5
К	%	No Limit	No Limit
Na	ppm	1200	1400
Ca	ppm	50	100
SO4	ppm	300	300
Fe	ppm	10	10
В	ppm	50	100
Ba	ppm	50	100
Mg	ppm	50	100
Si	ppm	20	40
NO3	ppm	10	10
Insolubels in HCI	ppm		100

Lithium Ark battery-grade lithium hydroxide

Lithium Ark Range	Unit	Range
LiOH	wt.%	56.5
CO2	wt.%	0.20 - 0.30
SO4	ppm	< 50
Si	ppm	< 50
Cl	ppm	<100
Na	ppm	<20
Са	ppm	< 50
К	ppm	< 50
Metals	ppm	<5

The lithium ark process is ultra low in impurities, such as Si, Zn and Al as it avoids any contamination from soda ash and lime.

FOR MORE INFORMATION, PLEASE CONTACT:

Peter Ehren

CTO & Founder Lithium Ark Holding B.V. MSc. Raw Materials Technology Maastricht, The Netherlands M:+31 6 19842 318 E: peter.ehren@lithiumjv.com I: www.LithiumArk.com

Matias Ehren BSc. Circular Engineering E: matias.ehren@lithiumjv.com

Appendix

Key Factors to decarbonize Lithium Refining

Crystallization is the foundation of the **Green**⁺ Lithium Refinery. An electrolysis module is added to increase ESG and financial performance

MAIN MODULE:

GE

A straightforward crystallization plant to crystallize Lithium Hydroxide (LiOH) and Potassium Chloride (KCI), GEA Messo, world leader in crystallization processing, has validated, tested, and guarantees this module of the GreenifyTM Refinery.

OPTIONAL MODULE:

Electrolysis Module (Recycle KCI \rightarrow KOH):

A **plug-and-play** Potassium-Chloride (KCI) electrolysis module based on mature and commercially-proven technology. Such plants are commonly found throughout the chlor-alkali sector with a worldwide installed base of 2 Million MT/Annum of KCI-Electrolysis today.